CONVWAVE: Searching for Gravitational Waves with Fully Convolutional Neural Nets

T. Gebhard^{1,*}, N. Kilbertus^{1,2,*}, G. Parascandolo^{1,3}, I. Harry⁴, B. Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen ²Engineering Department, University of Cambridge ³Max Planck ETH Center for Learning Systems ⁴Max Planck Institute for Gravitational Physics (AEI Potsdam)

Contact the authors: {tgebhard,nkilbertus}@tue.mpg.de

ONE SENTENCE SUMMARY

We use fully convolutional neural nets to find gravitational waves in time series data of arbitrary length and propose metrics for evaluating the continuous predictions.

BACKGROUND: GRAVITATIONAL WAVES & LIGO

- Prediction of Einstein's theory of General Relativity: Accelerating masses emit gravitational waves (GWs).
- GWs are perturbations in the metric of spacetime: They stretch and compress space as they pass through.
- First direct observation of a GW by LIGO in 2015 [1].
- LIGO idea: Measure length difference between arms of giant interferometer, look for chirp-like signal (Fig. 3).
- Challenge: Signal incredibly small, only of $\mathcal{O}(10^{-21})!$

STATUS QUO & OUR CONTRIBUTIONS

- Current pipeline uses matched filtering: Works well, but not computationally efficient, discards information.
- Obvious Idea: Use Deep Learning directly on strain data.
- First results with CNNs by George & Huerta, 2016 with fixed 1-second window and yes/no-classification [2].
- Their 2017 extension uses a sliding window approach →
 Works, but suboptimal efficiency and time resolution.
- Our idea: Use fully convolutional nets to directly process arbitrarily long input data (no window needed).
- Develop a sensible approach for the (training) labels and a metric for evaluating the net's performance.

EXPERIMENTS & RESULTS

- Use real LIGO recordings as noise and add simulated GW signals to create training samples (Fig. 2, 4, 7).
- Parameter range: $m_{1,2} = 1-50 \,\mathrm{M}_{\odot}$; $d = 100-1700 \,\mathrm{Mpc}$
- Use a fully convolutional architecture without much finetuning or hyper-parameter optimization (Fig. 5).
- Train and evaluate on 12s stretches containing 0–2 injections; calculate detection and FA rates (Fig. 6).
- Results: Detection rate 64.1–97.4%, FA rate 0.4–1.6%.
- Finally: Train net on GW151226 data and apply it to the real GW150914 event → Net successfully recovers it!

NEXT STEPS & OUTLOOK

- Top priority: Better treatment of signal-to-noise ratio for comparison with other current methods.
- Optimize architecture and hyper-parameters.
- Potential complementary trigger generator for LIGO?

REFERENCES

- [1] Abbott, B.P. et al., 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6).
- [2] George, D. and E. Huerta, 2016/2017: *Deep Neural Networks to Enable Real-time Multimessenger Astrophysics*. arXiv: 1701.00008.
- [3] Van den Oord, A. et al., 2016. *WaveNet: A Generative Model for Raw Audio*. arXiv: 1609.03499.

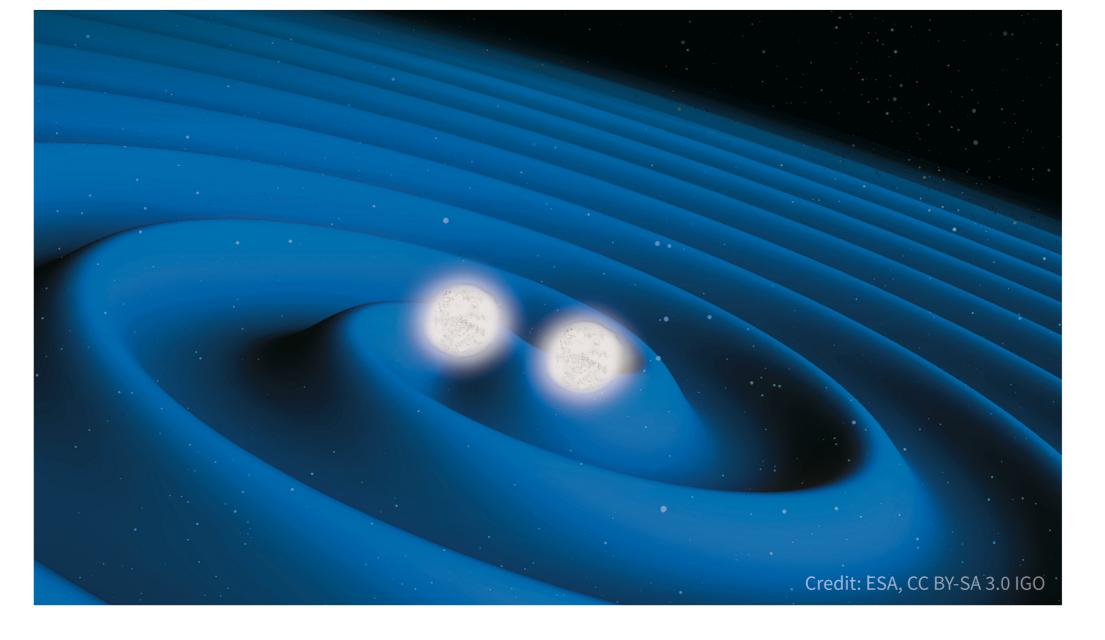


Fig. 1: Artist's impression of a BNS coalescence.

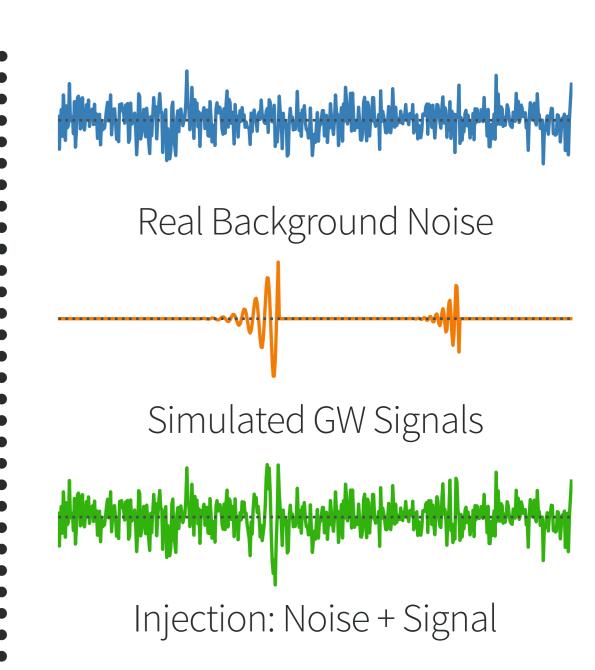


Fig. 2: Creating data.

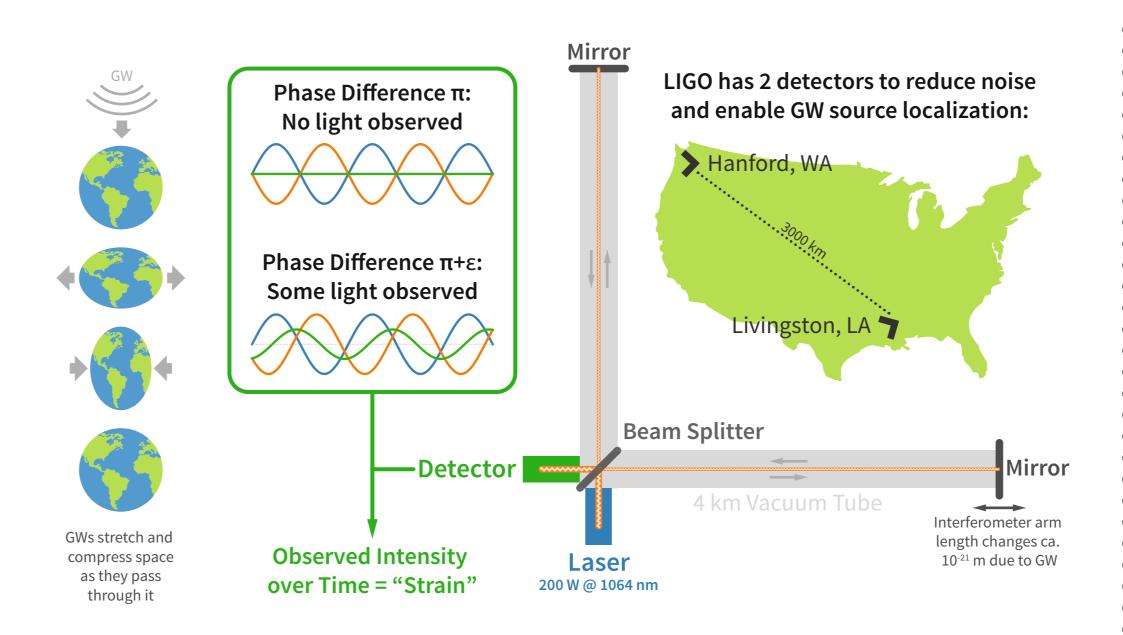


Fig. 3: Functional principle of the LIGO detectors.

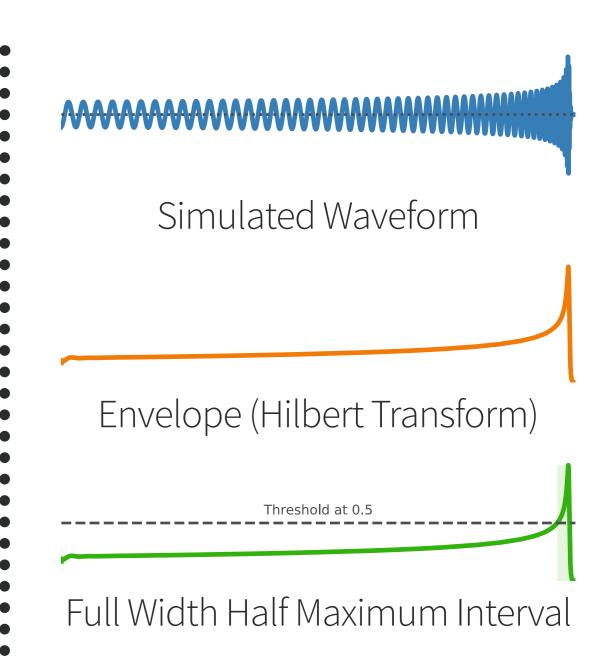


Fig. 4: Creating labels.

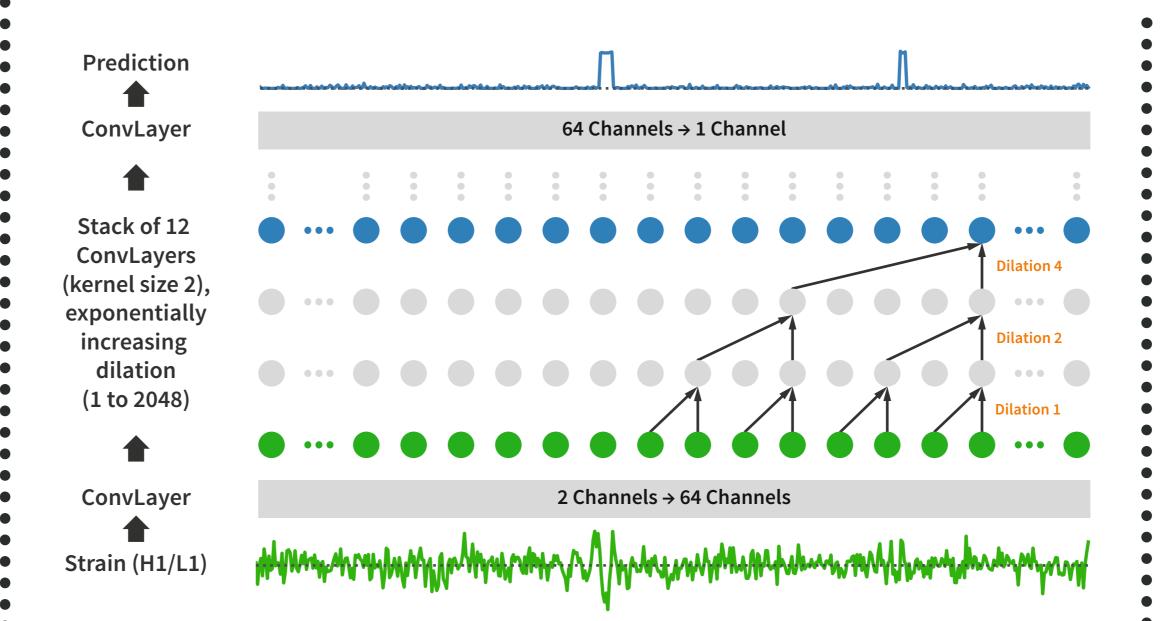


Fig. 5: Our WaveNet-inspired CNN architecture [3].

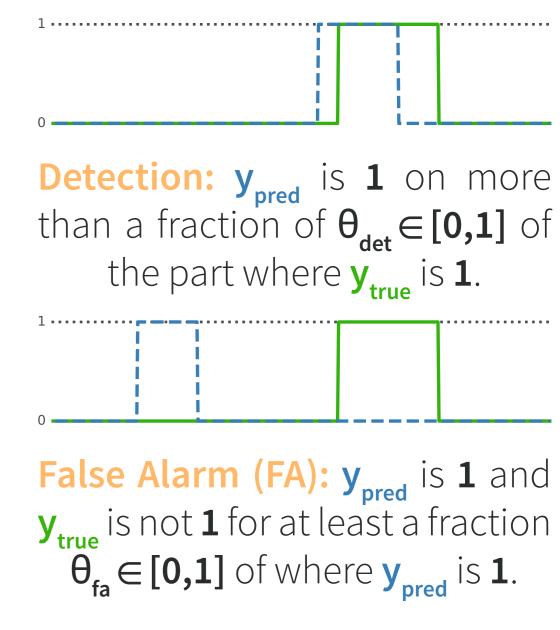


Fig. 6: Detections & FAs.

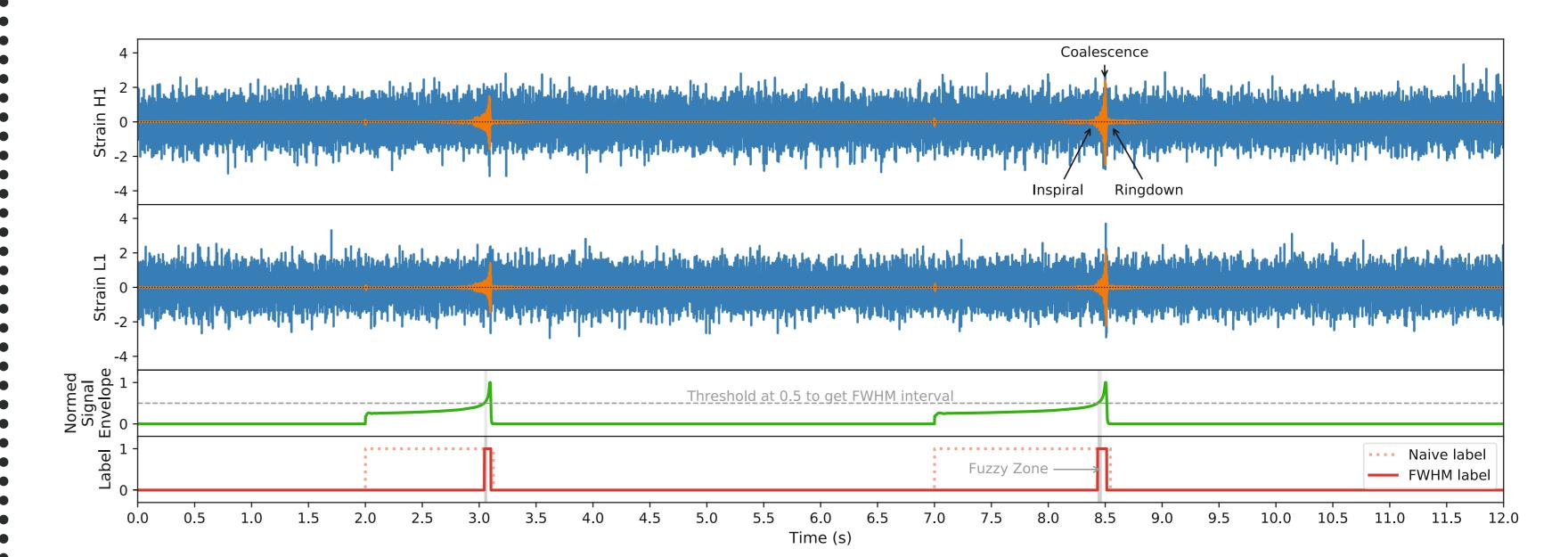


Fig. 7: Sample signal, corresponding (FWHM) label vectors and fuzzy zones.

